Roles for jasmonate- and ethylene-induced transcription factors in the ability of Arabidopsis to respond differentially to damage caused by two insect herbivores
نویسندگان
چکیده
Plant responses to insects and wounding involve substantial transcriptional reprogramming that integrates hormonal, metabolic, and physiological events. The ability to respond differentially to various stresses, including wounding, generally involves hormone signaling and trans-acting regulatory factors. Evidence of the importance of transcription factors (TFs) in responses to insects is also accumulating. However, the relationships among hormone signaling, TF activity, and ability to respond specifically to different insects are uncertain. We examined transcriptional and hormonal changes in Arabidopsis thaliana after herbivory by larvae of two lepidopteran species, Spodoptera exigua (Hübner) and Pieris rapae L. over a 24-h time course. Transcriptional responses to the two insects differed and were frequently weaker or absent in response to the specialist P. rapae. Using microarray analysis and qRT-PCR, we found 141 TFs, including many AP2/ERFs (Ethylene Response Factors) and selected defense-related genes, to be differentially regulated in response to the two insect species or wounding. Jasmonic Acid (JA), JA-isoleucine (JA-IL), and ethylene production by Arabidopsis plants increased after attack by both insect species. However, the amounts and timing of ethylene production differed between the two herbivory treatments. Our results support the hypothesis that the different responses to these two insects involve modifications of JA-signaling events and activation of different subsets of ERF TFs, resulting in different degrees of divergence from responses to wounding alone.
منابع مشابه
Different Transcript Patterns in Response to Specialist and Generalist Herbivores in the Wild Arabidopsis Relative Boechera divaricarpa
BACKGROUND Plants defend themselves against herbivorous insects, utilizing both constitutive and inducible defenses. Induced defenses are controlled by several phytohormone-mediated signaling pathways. Here, we analyze transcriptional changes in the North American Arabidopsis relative Boechera divaricarpa in response to larval herbivory by the crucifer specialist lepidopteran Plutella xylostell...
متن کاملInteraction between MYC2 and ETHYLENE INSENSITIVE3 modulates antagonism between jasmonate and ethylene signaling in Arabidopsis.
Plants have evolved sophisticated mechanisms for integration of endogenous and exogenous signals to adapt to the changing environment. Both the phytohormones jasmonate (JA) and ethylene (ET) regulate plant growth, development, and defense. In addition to synergistic regulation of root hair development and resistance to necrotrophic fungi, JA and ET act antagonistically to regulate gene expressi...
متن کاملInsect oral secretions suppress wound-induced responses in Arabidopsis
The induction of plant defences and their subsequent suppression by insects is thought to be an important factor in the evolutionary arms race between plants and herbivores. Although insect oral secretions (OS) contain elicitors that trigger plant immunity, little is known about the suppressors of plant defences. The Arabidopsis thaliana transcriptome was analysed in response to wounding and OS...
متن کاملRewiring of the Jasmonate Signaling Pathway in Arabidopsis during Insect Herbivory
Plant defenses against insect herbivores and necrotrophic pathogens are differentially regulated by different branches of the jasmonic acid (JA) signaling pathway. In Arabidopsis, the basic helix-loop-helix leucine zipper transcription factor (TF) MYC2 and the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) domain TF ORA59 antagonistically control these distinct branches of the JA pathway. Feeding ...
متن کاملDifferential Contribution of Transcription Factors to Arabidopsis thaliana Defense Against Spodoptera littoralis
In response to insect herbivory, Arabidopsis plants activate the synthesis of the phytohormone jasmonate-isoleucine, which binds to a complex consisting of the receptor COI1 and JAZ repressors. Upon proteasome-mediated JAZ degradation, basic helix-loop-helix transcription factors (TFs) MYC2, MYC3, and MYC4 become activated and this results in the expression of defense genes. Although the jasmon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2014